Contents & References of Gas turbine rotor stress analysis using continuum damage mechanics
List:
Chapter 1: Introduction 1 1-1 Introduction 2 1-2 Mechanics of continuous damage 4 1-3 The purpose of the research 5 1-4 Summary of topics raised in this thesis 5 Chapter 2: An overview of the research done 7
1-2 Continuous damage mechanics 8
2-2 Creep-fatigue interaction 13
Chapter 3: Governing equations 19 3-1 Introduction 20 3-2 Nature and variables of damage 20 3-3 Types of damage 23 3-4 Basic concepts 27 3-4-1 Damage parameter 27 3-4-2 Concept of effective stress 3-4-3 Principle Equivalent strain 30 3-4-4 Relation of strain and damage 30 3-4-5 Damage threshold 33 3-5 Thermodynamic formulation of damage 35 3-5-1 Thermodynamics of damage 35 3-5-2 General framework 36 3-5-3 State potential for damage Equivalent 40
3-5-4 Kinetic laws of damage growth 41
3-6 Couple elasto-(visco-)plasticity equations with damage 45
3-6-1 Basic equations of (visco-)plasticity without coupling with damage 45
3-6-2 Couple equations between plasticity and damage 47
3-7 Creep-fatigue interaction modeling 49
3-8 Damage measurement 50
3-8-1 method of elasticity modulus changes 53
Chapter 4: Rotor modeling 55 4-1 Introduction 56 4-2 Operating conditions and rotor geometry 57 4-2-1 Operating conditions 57 4-2-2 Rotor geometry 60 4-3 Boundary conditions and applied loads 64 4-4 Temperature conditions 65
5-4 element selection and model meshing 68
4-6 solution steps 72
Chapter 5: Determining the mechanical properties of the rotor material 74
5-1 Introduction 75
5-2 Identification of the gas turbine rotor material 75
5-3 Simple and periodic tensile test 78
5-3-1 Results of the tensile test 80
5-3-2 Determination of parameters of the kinematic stiffness model 83
5-3-3 Determination of parameters Damage model 87 5-3-4 Determining the critical value of the damage parameter 91 5-4 Release test 97 5-4-1 Determining the parameters of the viscous Norton model 100 5-5 Conclusion 104 Chapter 6: Results and Review 105 6-1 Introduction 106 6-2 Finite Element Simulation Results 106 6-2-1 Current Status of the Rotor 107 6-2-2 Estimation of the Remaining Life of the Rotor 114 6-2-3 Review of the Results 117 6-3 Life Estimation Using the Test Replica 128
6-3-1 Replica method 128
6-3-2 Performing a replica test on the turbine rotor 129
6-3-3 Viewing replica test samples by SEM 131
Chapter 7: Conclusions and suggestions 135 7-1 Conclusion 136 7-2 Suggestions 137 Reference list 139 Source: [1] Lemaitre, J., (1992), A Course on Damage Mechanics, Springer Verlag, Berlin. [2] Moshaikhi Mohammad, PhD thesis in Mechanical Engineering, Isfahan University of Technology, "3D expansion of damage in malleable materials", 2005. [3] Lemaitre, J., Chaboche, J.L. (1990), Mechanics of Solid Materials, Cambridge University Press.
[4] Kachanov, L.M., “Time of the Rupture Process under Creep Conditions”, Izv Akad Nauk SXR. Otd Tech Nauk, 8, pp. 26-31, 1958.
[5] Rabotnov, Y. N. (1968), “Creep Rupture”, 12th International Congress of App. Mech. Stanford.
[6] Krajcinovic, D., “Damage Mechanics”, Mech. Mater. 8, pp. 117-197, 1989.
[7] Lemaitre, J., "Evaluation of dissipation and damage in metals", submitted to dynamic loading, Proc. I.C.M.1 Kyoto Japan (1971).
[8] Hult, J. (1972). Creep in continua and structures, Topics in Applied Continuum Mechanics. Springer Verlag, Vienna. [9] Leckie, F. and Hayhurst, D., "Creep rupture of structures", Proc. R. Soc. London A240, 1974. [10] Fatemi A., Yang, L. (1998). "Cumulative fatigue damage and life prediction theories: a survey of the state of the art for homogeneous materials", Int. J. Fatigue Vol. 20. I, pp. 9-34.
[11] Lemaitre, J. and Chaboche, J.L. (1978). "Aspect pehnomenologique de la rupture par endodamagement", J. Mec. Appl. 2, 317.
[12] Lemaitre,.
[12] Lemaitre, J., and Plumtree, A., "Application of damage concepts to predict creepfatigue failures", J. Eng. Matt. Tech. Vol. 101, pp. 284-292, 1979. [13] Chrzanowski, M. and Kolczuga, M. (1980). "Continuous damage mechanics applied to fatigue failure", Mech. Res. Commun. 7, 41. [14] Budiansky, B. and O'Connell, R.J. (1976), "Elastic moduli of a cracked solid", Int. J. Solids Struct., Vol. 12, I. 81.
[15] Lemaitre, J. and Dufailly, J., “Modelisation et identification de l'endommagement plastique des metaux”, 3eme Congres Francsais de Mecanique Grenoble, 1977.
[16] Gurson, A.L., “Continuum theory of ductile rupture by void nucleation and growth: part I- yield criteria and flow. rules for porous ductile". ASME, Journal of Engineering Materials and Technology Vol. 99, pp. 2-15, 1977.
[17] Needleman, A., and Tvergaard V., "An analysis of ductile rupture in notched bars", Journal of Mechanics and Physics of Solids, Vol. 32, 461, 1984. [18] Chaboche, J.L. (1978). Description thermodynamique et phénoménologique de la viscoplasticité cyclique avec endommagement. PhD Thesis, Université Paris 6, Paris.
[19] Cordebois, J.P. and Sidoroff, F., "Endomagement Anisotrope en Elasticite et Plasticite", Journal de Mecanique Theorique et Appliquee, pp. 45-60, 1982.
[20] Krajcinovic, D., and Fonseka, G., "The continuum damage theory of brittle materials. Part 1: General theory”, ASME, J. Appl. Mech. Vol. 48, pp. 809-815, 1981.
[21] Murakami S., “Notion of Continuum Damage Mechanics and Application to Anisotropic Creep Damage Theory”, J. Eng. Matt. Tech., 105, pp. 99-105, 1981.
[22] Ortiz, M., "A constitutive theory for the inelastic behavior of concrete", Mech. Matt. Vol. 4, pp. 67-93, 1985.
[23] Voyiadjis, G. and Park, T., "The kinematics of damage for finite-strain elastoplastic solids", International Journal of Mechanical Sciences, Vol. 37, pp. 803–830, 1999.
[24] Ladeveze, P., “Sur une Theorie de I'Endommagement Anistrope”, Report LMT-Cachan, n. 34, 1983.
[25] Lemaitre, J., "A continuous damage mechanics model for ductile fracture", Journal of Engineering Materials and Technology, Vol. 107, pp. 83–89, 1985.
[26] Benallal, A., Billardon, R., and Doghri, I., "An integration algorithm and the corresponding consistent tangent operator for fully coupled elastoplastic and damage equations", Communications in Applied Numerical Methods Vol. 4, pp. 731-740, 1988.
[27] Dhar, S., Sethuraman, R., and Dixit, P., "A continuum damage mechanics model for void growth and micro crack initiation", Eng. Fract. Mech. Vol. 53, pp. 917-928, 1996.
[28] Tai, H.W., and Yang, B.X., “A new microvoid-damage model for ductile fracture”, Engineering Fracture Mechanics, Vol. 25 no. 3, pp. 377-384, 1986.
[29] Tai, H.W., "Plastic damage and ductile fracture in mild steels", Engineering Fracture Mechanics, Vol. 36 no. 4, pp. 853-880.
[30] Chandrakanth, S., and Pandey, P.C., “A new ductile damage evolution model”, International Journal of Fracture, Vol. 60, R73-R76, 1993.
[31] Doghri, I., "Numerical implementation and analysis of a class of metal plasticity models coupled with ductile damage", Int. J. Num. Methods in Eng., Vol. 38, pp. 3403-3431, 1995.
[32] Singh, AK., and Pandey, PC., "An implicit integration algorithm for plane stress damage coupled elastoplasticity", Mechanics Research Communications, Vol. 26, pp. 693-700, 1999.
[33] de Souza Neto, E.A., "A fast, one-equation integration algorithm for the Lemaitre ductile damage model", Commun. Numer. Meth. Eng., Vol. 18, pp. 541–554, 2002.
[34] Mashayekhi, M., Ziaei-Rad, S., “Identification and validation of a ductile damage model for A533 steel”, Journal of Materials Processing Technology, Vol. 177, pp. 291-295, 2006. [35] Davis, J.R. (1997)