Contents & References of Utilization of new catalysts in the one-step synthesis of Novonagel
List:
1 Green Chemistry 1
1.1 Principles of Green Chemistry 3
1.1.1 Prevention 3
1.1.2 Atom Saving 4
1.1.3 Reducing the Use of Hazardous Chemicals 5
1.1.4 Designing for Safer Chemicals 5
1.1.5 Safer solvents and auxiliaries 5
1.1.6 Design for energy efficiency 6
1.1.7 Use of renewable resources 6
1.1.8 Reduction of derivatives 7
1.1.9 Catalysts 7
1.1.10 Design for degradation Adaptability 9 1.1.11 Real-time analysis for pollution prevention 9 1.1.12 Safer chemistry for accident prevention 9 1.2 Efforts and achievements of green chemistry 10 1.2.1 Alternative fuels 10 1.2.2 Green and biodegradable plastics 11
1.2.3 Redesign of chemical reactions 13
1.2.4 Biological polystructures 13
2 Novnagel reaction 15
2.1 Conditions for carrying out the reaction 18
2.2 Applications of Novnagel reaction 18
2.3 Synthesis of disordered ring compounds 18
3 Catalyst 26
3.1 Types of catalysts 27
3.1.1 Homogeneous catalyst 27
3.1.2 Heterogeneous catalyst 28
3.1.3 Biological catalysts 28
3.2 Catalysts used for Novenagel reaction 28
3.2.1 Amines and ammonium salts 28
3.2.2 Lewis acids 29
3.2.2.1 Titanium tetrachloride 29
3.2.2.2 Cadmium iodide 29
3.2.2.3 Zinc chloride 30
3.2.3 Mineral solids and solid surfaces 30
3.2.4 Alkali metal salts 30
3.2.5 Phosphate catalysts 31
3.2.5.1 Optimized natural phosphate 31
3.2.5.2 Using phosphate complexes with Solid substrate 31
3.2.5.3 AlPO4-Al2O3 catalyst 33
3.2.5.4 Diammonium hydrogen phosphate 33
3.2.6 Ionic liquids 35
3.3 Carrying out the Novo Nagel reaction using microwave radiation 36
4 Amino acid 37
4.1 Importance and medical application of amino acids: 40
4.2 Classification of amino acids 41
4.2.1 Standard amino acids 42
4.2.2 Rare protein amino acids 42
4.2.3 Non-protein amino acids 43
4.3 Classification of amino acids according to nutritional role 43
4.3.1 Essential amino acids 43
4.3.2 Non-essential amino acids 43
4.4 Classification of amino acids according to chemical structure 44
5 Experimental section 48
5.1 Specifications of devices 49
5.2 Chemicals 49
5.3 Optimization of reaction temperature 50
5.4 Optimization of catalyst amount 50
5.5 Effect of solvent 51
5.6 General method of synthesis of unsaturated derivatives 52
5.7 Melting point measurement using capillary tube 53
5.8 Synthesis of derivatives 54 5.8.1 Synthesis of ethyl 3-(4-chlorophenyl)-2-cyanoprop-2-enoate derivative 54 5.8.1.1 Nuclear magnetic resonance test results 54 5.8.1.2 FT-IR test results 56 5.8.2 Synthesis Ethyl 3-(4-bromophenyl)-2-cyanoprop-2-enoate derivative 57 5.8.2.1 Nuclear magnetic resonance test results 57 5.8.2.2 FT-IR test results 61 5.8.3 Synthesis of ethyl 3-(2-methoxy phenyl)-2-cyanoprop-2-enoate derivative 62 5.8.3.1 Nuclear magnetic resonance test results 62
5.8.4.2 FT-IR test results 71
5.8.5 Synthesis of ethyl 3-(4-hydroxyphenyl)-2-cyanoprop-2-enoate derivative 72
5.8.5.1 Nuclear magnetic resonance test results 72
5.8.5.2 Review of FT-IR test results 76
5.8.6 Synthesis of ethyl 3-(2-bromophenyl)-2-cyanoprop-2-enoate derivative 77
5.8.6.1 Nuclear magnetic resonance test results 77
5.8.6.2 Review of FT-IR test results 81
5.8.7 Synthesis of (4-fluorobenzylidene)malononitrile derivative 82
5.8.7.1 Nuclear magnetic resonance test results 82
5.8.7.2 FT-IR test results 85
5.8.8 Derivative synthesis8 Synthesis of (4-chlorobenzylidene) malononitrile derivative 86 5.8.8.1 Nuclear magnetic resonance test results 86 5.8.8.2 FT-IR test results 89 5.8.9 Synthesis of (4-bromobenzylidene) malononitrile derivative 90 5.8.9.1 Nuclear magnetic resonance test results 90 5.8.9.2 FT-IR test results 93 5.8.10 Synthesis of (4-methoxybenzylidene)malononitrile derivative 94 5.8.10.2 FT-IR test results 97 5.8.11 Synthesis of ethyl 3-(4-N,N-dimethylamino phenyl)-2-cyanoprop-2-enoate derivative 98 5.8.11.1 Nuclear magnetic resonance test results 98 5.8.11.2 FT-IR test results 102
6 references 104
Source:
2001), 1108, 8.
[[1]] Kim Y.H. etal, Bioconjugate Chem,(2001), 932, 12.
[[1]] Merrill L. etal, ChemMatters,(2003), 7,4.
[[1]] Anastas P.T. Warner J.C., Green Chemistry: Theory and Practice, New York, Oxford University Press, (1998). Spangler F.W., Org Synth.(1955), 377,3.
[[1]] Rand L. Swisher J.V. Cronin C.J., J. Org Chem.(1962), 3505,27.
[[1]] Acher D.S. Hertler W.R., J. Am. Chem.Soc.(1962), 3370,84.
[[1]] Cardillo G. etal., Synth. Commun. (2003), 1578,33.
[[1]] Tietze L.F. Beifuss U., In comprehensive organic synthesis, Vol. 2, Oxford, pergamon press, (1991).
[[1]] Bigi F. etal, J. Org. Chem.,(1999), 1033,64.
[[1]] Yu N. Aramini J.M. Germann M.W., Tetrahedron Lett.(2000), 6993,41.
[[1]] Bigi F. etal, Green Chemistry,(2000), 3,2.
[[1]] Tarlton E.J. Mc Donald S.F. Baltazzi E., J. Am. Chem. Soc.,(1960), 4389,82.
[[1]] Kwak G. Fujiki M., Macromolecules,(2004), 2021,37.
[[1]] Wright M.E. Mullick S., Macromolecules, (1992), 6045, 25.
[[1]] Ryabukin S.V. et al., J. Comb. Chem.(2007), 1073,9.
[[1]] Pizzirani D. Roberto M. Recantini M., Tetrahedron letters. (2007), 7120,48.
[[1]] Alonso S.J. etal, Tetrahedron,(2007), 7120,63.
[[1]] Barnes D.M.etal, Tetrahedron,(2006), 11311,62.
[[1]] Karan J.J. Manian R.D.R.S. Raghunathan R., Tetrahedron letters,(2006), 2265,7.
[[1]] Bhowmik P.K. Nedeltchev A.K. Han H., Tetrahedron letters,(2007), 5383,48.
[[1]] Che M. Masure D.Chaquin P., j.Phys.Chem., (1993), 2022,97.
[[1]] Knoevenagel E., Chem. Ber., (1896), 172,29.
[[1]] Lehrent W., Synthesis, (1974), 667,1974.
[[1]] Courtheyn D. Verhe R. DeKimpe N. deBuyck L. Schamp N., J.Org. Chem., (1981), 3236,46.
[[1]] Prajapati D. Sandhu J.S., J. Chem. Soc. Perkin Trans. I,(1993),739.
[[1]] Rao P.S. Venkataratnam R.V., Tetrahedron Lett.,(1991), 5821,32.
[[1]] Moison H. Texier-Boullet F. Foucud A., Tetrahedron,(1987), 537,43.
[[1]] CabelloJ.A. Campello J.M. Garcia A. Luna D. Marinas J.M., J. Org. Chem., (1984), 5195.49. SuzukiH., Tetrahedron Lett. (2003), 399,44.
[[1]] Rand L. Haidukewych D. Dolinski R.J., J. Org. Chem., (1966), 1272.31. et al., Synth. Commun.,(1999), 1057,29.
[[1]] Alahiane A. etal, Appl. Catal. A,(2001), 217,206.
[[1]] Fraile J.M. etal, Green Chem., (2001), 271,3. J. Boukhari A. Holt E.M., Solid State Sci.,(1999), 373,1.
[[1]] El-maadi A