Contents & References of Investigating the absorption and release of oxytetracycline on functionalized graphene oxide
List:
Abstract ..1
Chapter 1_Graphene and its release. 2
1-1 Introduction ..3
1-2 Carbon allotropes .4
1-2-1 Diamond ..6
1-2-1-1 properties of diamond .6
1-2-2 Graphite ..7
Graphene ..83-2-1
1-2-4 Fullerene ..9
1-3 Definition of Nanoparticles ..10
1-4 Background of Nanotechnology ..12
1-5 History of Graphene ..13
1-6 Graphene Structure ..14
1-7 Identification of Oxide Graphene. 15. 1-8 Graphene production. 16. 1-8-1. Bottom-up method. 16. 1-8-2. Top-down method. 18. 1-9. Improving the quality of graphene oxide. 21. 10-1. Characteristics of graphene. 22. 1-11. ..23
1-12 release ..25
1-12-1 release system and digestion in dog. 26
Chapter II - Oxytetracycline and surface absorption ..27
2-1 Antibiotics ..28
2-1-1 Antibiotic history 28
2-1-2 types Antibiotics and mechanism of action. 29
2-2 Tetracycline..30
2-3 Oxytetracycline..30
2-3-1 Physical and chemical properties of oxytetracycline.
2-3-4 Pharmacokinetics of the drug.32
2-3-5 Drug contraindications.32
2-3-6 Period of avoiding drug use.32
2-3-7 Drug storage conditions.33
2-3-8 Identification of oxytetracycline powder.33
2-3-9 Disposal ..33
2-3-10 Contraindications and precautions for dogs. 33
2-3-11 Drug dosage for dogs. surface adsorption. 36
2-4-4 adsorption isotherms. 36
2-4-5 Freundlich adsorption isotherm. 37
2-4-6 Langmuir adsorption isotherm. 39
2-4-7 Langmuir isotherm for liquid adsorption on solid. 42
2-4-8 modified isotherm Langmuir. 43
2-4-9 Langmuir-Freundlich isotherm (Sipps equation). 44
2-4-10 Brunner-Immett-Teller isotherm. 45
2-4-11 Redlich-Peterson isotherm. 47
2-4-12 Temkin isotherm 48
2-4-13 Factors affecting absorption. 49
Chapter 3 - Method of doing the work. 51
3-1 Purpose of the experiment..52
3-2 Chemicals, devices and devices used in this experiment. 52
3-2-1 Devices used in the experiment. 52. 2-3-2-Chemical materials for making graphene. 53
3-2-3 Devices used for making graphene. 54
3-2-4 Materials used in activating graphene oxide by epichlorohydrin. 54
3-2-5 Materials Used in functionalizing and improving the quality of graphene oxide functionalized by epichlorohydrin and sibacrone blue. 55
3-2-6 Solvents and reagents. 55
3-2-6-1 Acetoxytetracycline 55
3-2-6-2 buffers..55
3-3 stages of graphene oxide synthesis. 56
3-4 Chemical bond of graphene oxide with epichlorohydrin. Oxytetracycline functionalized by graphene oxide. 60
3-6-1 Investigating the effect of pH on the absorption of oxytetracycline drug. 60
3-6-2 Determining the optimal concentration of drug absorption on graphene oxide. 61
3-7 Investigating the release of oxytetracycline drug in the simulated environment of a dog's stomach. 62
Chapter 4 - discussion and conclusion. 63
4-1 Identification and investigation of synthesized graphene oxide by UV-VIS spectrum. 64
4-2 Identification and investigation of synthesized graphene oxide by FT-IR spectrum. 64
4-2-1 FT-IR spectrum of graphene oxide. 64. 4-2-2 Investigation of graphene oxide functionalized with epichlorohydrin 66 4-2-3 Investigation of the quality of graphene oxide functionalized with epichlorohydrin and Ciba Crown Blue with FT-IR 68 4-3 Study and investigation of absorption isotherms 70
4-4 Absorption graphs.72
4-5 Examining the absorption of oxytetracycline drug by functionalized graphene oxide.73
4-5-1 Studying and investigating the effect of pH on the absorption of oxytetracycline drug.73
4-5-2 Examining the concentration of the adsorbent on the adsorbent.74
4-6 Investigation of the release of oxytetracycline in the stomach environment of dogs.75
4-7 Conclusions..76
List of references..77
English abstract.82
Source:
[1] Kosynkin, D. V., Higginbotham, A. L., Sinitskii, A., Lomeda, J. R., Dimiev, A., Price, B. K., Tour, J. M., “Longitudinal Unzipping of Carbon Nanotubes to form Graphene Nanoribbons”, Nature, Vol.458, pp.872–876 (2009).
[2] Geim, A. K., Kim, P., “Carbon Wonderland”, Scientific American, pp. pp.90–97 (2008)
[3] R. J. Nicholas, et al., Introduction. Carbon-based electronics: fundamentals and device applications, Phil. Trans. R. Soc. A 366, 189–193 (2008) [4] Heyrovska, R., “Atomic Structures of Graphene, Benzene and Methane with Bond Lengths as Sums of the Single, Double and Resonance Bond Radii of Carbon”, (2008).
[5] H. W. Kroto, et al., C60: Buckminsterfullerene, Nature 318, 162-163 (1985).
[6] S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56-58 (1991).
[7] Kaparissides, C, Alexandridou S., Kotti K., Chaitidou S., Recent Advances in Novel Drug Delivery Systems, J. Nano. Tech. 2006, 2, 1-11
[8] Freestone, N. Meeks, M. Sax and C. Higgitt, 'The Lycurgus Cup: A Roman nanotechnology', Gold Bulletin, 4 (2007), pp. 270–277
[9] N. D. Mermin, Phys. Rev. 176, 250 (1968).
[10] Geim, A.K, Novoselov, K.S, "The Rise of Graphene." Nature Material, Vol.6, pp.183-191
[11] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Science 306, 666 (2004).
[12] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. Katsnelson, I. V. Grigorieva, S. V. Dubonos and A. A. Firsov, Nature 438, 197 (2005). [13] K. S. Novoselov, D. Jiang, F. Schedin, T. J. Booth, V. V. Khotkevich, S. V. Morozov and A. K. Geim, Proc. Natl. Acad. Sci. 102, 10451 (2005).
[14] Nevoselov, K. S., et al., Proc. Natl. Acad. Sci. U.S.A. 102, 10451, 2005
[15] Nevoselov, K. S., et al, "Electric Field Effect in Atomically Thin Carbon Films", Science 306, pp. 666-669, 2004
[16] Saito, R, Dresselhaus, G and Dresselhaus.M.S, (1998), “Physical Properties of Carbon Nanotubes”, Imperial College Press, London
[17] Curl, R.F (1997), “Dawn of the fullerenes: experiment and conjecture” Rev.Mod.Phys.Vol. 69, pp. 691.
[18] Y. Ohashi, et al., Size effect in the in-plane electrical resistivity of very thin graphite crystals. TANSO 235238 (1997). 457, pp. 706.
[20] A. K. Geim, K. S. Novoselov, The rise of graphene, Nat. Mater., vol. 6, no.3, 183-191 (2007).
[21] K. S. Novoselov, et al., Two-dimensional atomic crystals. Proc. Natl Acad. Sci. USA 102, 1045110453 (2005).
[22] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff, (2009), "Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils", Science Vol. 324, pp. 1312.
[23] Keun Soo Kim, Yue Zhao, Houk Jang, Sang Yoon Lee, Jong Min Kim, Kwang S. Kim, Jong-Hyun Ahn, Philip Kim, Jae-Young Choi and Byung Hee Hong, (2009), "A Molecular Mechanics Study of Morphologic Interaction between Graphene and Si Nanowires on a SiO2 Substrate", Nature Vol. 457, pp. 706.
[24] Rao, C. N. R., Sood, A. K., Subrahmanyam, K. S., Govindaraj, A., "Graphene: The New Two-Dimensional Nanomaterial", Angewandte Chemie, International Edition, Vol.48, pp.7752–7777 (2009).
[25] Shao, Y., Wang, J., Wu, H., Liu, J., Aksay, I. A., Lin, Y., "Graphene Based Electrochemical Sensors and Biosensors: A Review", Electroanalysis, Vol.22, pp.1027–1036 )2010).
[26] Novoselov, K. S., Geim, A. K., Morozov, S. V.