Contents & References of Inorganic aromatic compounds - theoretical study of structure, bonding, spectral and optical properties
List:
Chapter I
1-1 aromatic cyclic compounds. 1
1-2 aromatic. 1
1-3 aromatic criteria. 2
1-4 quantitative aromatic expression. 3
1-4-1 nuclear-independent chemical shift. 3
1-4-2 Anisotropy of magnetic susceptibility. 4
1-4-3 magnetic susceptibility. 4
1-4-4 Indicators caused by the number of atoms in the molecule. 5
1-4-5 spherical coordination model of aromaticity. 6
1-5 X3Y3H6 compounds. 7
1-6 Borazine. 8
1-6-1 synthesis. 8
1-6-2 Properties 8
1-6-3 Structure 9
1-6-4 Isomers 9
1-6-5 Reactions 9
1-6-6 Applications 10
1-7 Superpolarizability. 10
Chapter Two: Computational Chemistry
2-1 Introduction. 13
2-2 intermolecular forces. 13
2-3 types of intermolecular forces. 14
2-3-1 Electrostatic forces. 14
2-3-2 induced forces. 14
2-3-3 dispersion forces. 15
2-4 computer modeling methods. 15
2-4-1 molecular mechanics. 15
2-4-2 quantum mechanics. 16
2-5 Classification of methods 16
2-5-1 Semi-empirical methods. 16
2-5-2 initial methods. 16
2-5-3 Hartree-Fack approximation. 17
2-5-3-1 Müller-Plast disorder theory. 18
2-5-3-2 method of configuration interactions. 18
2-5-3-3 multi-configuration self-consistent field method. 18
2-5-4 dense function theory (DFT) 18
2-6 basis sets. 19
2-6-1 Minimum basic set. 20
2-6-2 split capacitive base set. 20
2-6-3 intrusive basic functions. 20
2-6-4 Polarizable base sets. 20
2-7 software used in this study. 21
Chapter three: discussion and conclusion
3-1 energetic aspects 23
3-2 bipolar torque. 24
3-3 Polarizability. 25
3-4 frontal orbital analysis. 28
3-5 structural analysis. 31
3-6 electron spectra. 33
3-7 Superpolarizability. 34
Overall result. 37
Future works. 38
References. 39
Examples of input files. 42
An example of the output files of an optimized structure. 44
An example of bipolar torque output data. 46
Example of superpolarizability input data. 46
Example of hyperpolarizability output data. 47
Articles. 48
English abstract 54
Source:
(1) Dimitrakopolous, C. D.; Malenfant, P. Adv. Mater. 2002, 14, 29.
(2) Kanis, D. R.; Ratner, M. A.; Marks, T. J. Chem. Rev 1994, 94, 195.
(3) Mendes, P. J.; Silva, T. J. L.; Carvalho, A. J. P.; Ramalho, J. P. P. Journal of Molecular Structure: THEOCHEM 946, 33.
(4) Avc?, D.; Basoglu, A.; Atalay, Y. Struct Chem 2010, 21, 213.
(5) Medved, M.; Budz?k, S.; Cernu??k, I. Journal of Molecular Structure: THEOCHEM 2010, 961, 66.
(6) Bartkowiak, W.; Strasburger, K. Journal of Molecular Structure: THEOCHEM 960 (2010) 93–972010, 960, 93.
(7) Souza, L. A. D.; Jr., A. M. D. S.; Junqueira, G. M. A.; Carvalho, A. C. M.; Santos, H. F. D. Journal of Molecular Structure: THEOCHEM 2010, 959, 92.
(8) Karton, A.; Iron, M. A.; Boom, M. E. v. d. Martin, J. M. L. J. Phys. Chem. A2005, 109, 5454.
(9) Ray, P. C. Chemical Physics Letters 2004, 354. (10) Hameed, A.; Rybarczyk-Pirek, A.; Zakrzewski, J. Journal of Organometallic Chemistry 2002, 656, 102.
(11) Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M.A.; Cheeseman, J.R.; Montgomery, J. A.; Jr. Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J.M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai,.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M.C.; Farkas, O.; Malick, D.K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J.V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R.L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonz?lez, C.; Pople, J. A.; Revision B.03 ed.; Gaussian, Inc., Pittsburgh PA,: 2003.
(12) Dewar, M. J. S.; Reynolds, C. H. J. Comp. Chem. 1986, 2, 140. (13) Raghavachari, K.; Pople, J. A.; Replogle, E. S.; Head-Gordon, M. J. Phys. Chem. A1990, 94, 5579.
(14) McLean, A. D.; Chandler, G. S. J. Chem. Phys. 1980, 72, 5639.
(15) Krishnan, R.; Binkley, J. S.; Seeger, R.; Pople, J. A. J. Chem. Phys. 1980, 72, 650. (16) Becke, A. D. J. Chem. Phys1993, 98, 5648.
(17) Keleiman, D. A. Phys. Rev.1962, 126, 1977.
(18) Runge, E.; Gross, E. K. U. Phys. Rev. Lett. 1984, 52, 997. (19) March, J. Advanced Organic Chemistry; 3rd ed.; John Wiley & Sons: New York 1985.
(20) Zhang, C. R.; Chen, H. S.; Wang, G. H. Chem. Res. Chinese2004, 20, 640.
(21) Cheng, H.; Feng, J.; Ren, A.; Liu, J. Acta Chim. Sin.2002, 60, 830.
(22) Roy, D. R.; Chattaraj, P. K. r. J. Phys. Chem. A 2008, 112, 1612.
(23) Pearson, R. G. Chemical Hardness; Wiley-VCH: Oxford, 1997.
(24) Parr, R. G.; Yang, W. Density-Functional Theory of Atoms and Molecules; Oxford University Press: New York, 1989.
The figures and tables mentioned in this article can be seen in the third chapter.
Articles
Computational raid on Structural, electronic, and optical properties of Borazine-based conjugated derivatives
Reza Ghiasi*, Sara Akbari Akbari Esterabadi Fard
Department of Chemistry, Basic Science Faculty, East Tehran Branch, Qiam Dasht, Tehran, Islamic Azad University, Tehran, IRAN.
Density functional theory (DFT) calculations were employed to investigate the structural characteristics, electronic properties, and nonlinear optical properties of Borazine-based conjugated derivatives at B3LYP/6-311G(d,p) level.
We studied the effects of various donor and acceptor substituents (Y=H, F, Cl, Br, Me, NH2, OH, COOH, CHO, NO2) on the stability, dipole moment, polarizability, frontier orbitals, structure, the most intense electronic transition, and hyperpolarizabilities. The vibrational frequencies analysis reveals show no imaginary vibrational frequency for all complexes. Therefore, they are a true minimum on the molecular potential energy surface. Also, we obtained good linear relationships between some of the studied properties. Structural analysis indicates the CC bond distance presents a good correlation between CC chain length and Hammett constant for n=2 and 3. There is a good correlation between hardness and lmax for -C?C- and -C?C-C?C- units. The most intense electronic transition for -C?C- and -C?C-C?C- units is attributed to HOMO®LUMO transition. A good correlation between btot and lmax suggested in n=1 and 2 molecules that this transition participates a significant role in determining b.
References:
[1]. CD Dimitrakopolous, P. Malenfant, Adv. Mater. , 14 (2002) 29.
[2]. D. R. Kanis, M.A.